
2. MATHS 2: CLOSING IN

In this chapter we continue to talk about some basic maths. The maths of this
chapter are more closely related to physics and thus serve both as a bridge to
our consideration of the physics itself and a closure with that physics.

Remark 1 One of the complaints that is often voiced is that because maths are
hard and complicated, then we should study them no more than is absolutely
necessary. This argument, while apparently logical, is actually pure rubbish.
In actuality, the more maths that are learned, the simpler and less complicated
they become, both to learn and to use. The (classical) Greeks never got beyond
the idea of specific values of numbers and thus never got to variables or invented
algebra, much less calculus or any of the more advanced maths. As a result their
science never got much beyond philosophy and ad hoc engineering. Problems
that they could not solve at all with only specific values are trivial with algebra
(such as musical scales!), while problems that are hideously difficult with algebra
(like the area under a graphed curve,) are trivial with calculus.

Thus, we study maths not because they are hard, but because
knowing them makes things easy.

2.1 Measurement: Coordinate Systems andUnits

William Thomson, the first Lord Kelvin, an accomplished English physicist,
while lecturing to the Institution of Civil Engineers on the Third of May, 1883,
said

"When you can measure what you are speaking about and express
it in numbers, you know something about it."

One of the things that sets science apart from many other human activities
is measurement. While there is a role in science for description, otherwise we
should not be writing this book, description without some form of measurement
is fundamentally a sterile dead end.
This is not to say that one may not be confronted with a dead end, either

permanent or temporary, after measurement, but rather that without measure-
ment there is nothing but dead end of the permanent sort.
However, to measure things we must have some system of measurement.

There are two necessary components of a measurement system:1

1There may arise a requirement for more than these two, but all measurement systems
require at least these two.
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• an ordered framework for the measurement; and
• an ordered framework of the measurement.

The first of these provides a context for the measurement while the second
provides a magnitude of the measurement. We shall discuss these sequentially.

2.1.1 Coordinate Systems

The ordered framework for a measurement is provided by a coordinate sys-
tem. The simplest and most common coordinate systems, which are what we
shall primarily consider here, are spatial coordinate systems. That is, they are
coordinate systems that allow us to measure space. These are the simplest
because they are directly visualizable by humans.

2.1.2 Spatial Coordinate Systems

The simplest spatial coordinate system is represented by a line with equally
spaced, finite increments imposed on it. We are not only quite familiar with
this, but recognize it to be rather limited in usefulness since very few problems
are typified by having only one dimension of length.

Remark 2 Yes, we all measure lengths with things like rulers, or yard or
meter sticks, or steel or cloth tapes. We measure the length of a piece of wood
or cloth, the height of a person, or the dimensions of a room. We may get
away with only measuring the single dimension because all of thee things have
fixed dimensions. In most cases, they are solids although we shall not consider
in detail the characteristics of solids for a few chapters yet.

The next more complicated coordinate systems are the planar, which we
have already discussed in the previous chapter. The graph is a coordinate
system that provides a means of visualizing a set of point specific values of two
variables. If we plot or graph enough points, or connect the points with lines,
then the graph becomes that of a curve. If we now invert this idea to consider
the axes of the graph to provide a means of specifying the particular values of
the positions of points on the graph, then we have an example of a coordinate
system and its use.

Two-Dimensional (2-D) Spatial Coordinate Systems

If we now visualize a graph - a pair of incremented axes - with one point on it,
as shown in the figure,
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Example of a point in a (graph) coordinate system

then we may envision two obvious ways of specifying where that point is in
the coordinate system of the axes of the graph. The first of these is by the
projection of the point onto each axis. This specifies the particular values of
the point in the coordinate system, as shown in this modified figure.
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Example of a point in a (graph) coordinate system with projection of the
point onto the two coordinate axes

It may be recalled from the previous chapter that we then drew a graph
from a set of points {xi, f (xi) , i = 1..I} (where the curly braces {} indicate
a set or collection.) We also wrote a function of x as y = f (x), where we
considered y to be a separate variable. Now, let us assume that y may be
a variable independent of x, so that we may talk about a point on a graph
(x, y) where x and y are not (necessarily) related to each other except by the
framework of the coordinate system. Then we may conceive of measuring x and
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y using that coordinate system (usually through some measuring instrument
such as a ruler,) so that the position of the point is specified.

Notice here, that we have put some rigor into what we previously said
about one dimensional (1-D) measurement. Such measurements generally are
only meaningful in some fixed context and that context here is the coordinate
system.

If we have a coordinate system where the axes have the same units of
measurement, and no axis has any overlap (called projection) with any of
the other axes other than a point (at the origin, e.g.,) then we say that such
a coordinate system is Cartesian. In our case the 2-D coordinate system just
introduced is Cartesian if the two axes have the same units of measurement.

In geometric terms, the two axes are at right angles to each other. We
sometimes say that the two axes are orthogonal to each other and we tend
to think that orthogonality is associated with the right angle. This association
is not wrong when we are dealing with purely spatial coordinate systems, but
when we deal with coordinates that are not spatial, this association can lead
to erroneous interpretation. Indeed, as we proceed, we shall introduce the idea
of functional orthogonality. A better way of viewing this is that coordinates
that re orthogonal to each other are independent of each other in the context
of the coordinate system. They may be linked by the physics, but not by the
coordinate system.

Thus, the statement that the x and y coordinate axes are orthogonal to
each other means that the measurements of specific values of x and y do not
depend on each other.

We mentioned that there was a second obvious way to measure the position
of a point. That way is to measure the distance of the point from the origin,
and the angle that the line from the origin to the point makes with the x-axis
as shown in the figure.2

2Which axis we measure from is arbitrary, but tradition and convention are that we
measure from the x-axis, which is the horizontal in our way of drawing.
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Example of a point in a (graph) coordinate system specified by its distance
from the origin and angle to the x-axis

Obviously this coordinate system is not Cartesian, since a distance and
an angle will not be measured in the same units. The axes do not appear to
be orthogonal but we defer addressing this matter till a later section of this
chapter. We usually call this coordinate system the circular coordinate system
as we call the previous one the rectangular coordinate system.
Thus, we may specify the position of a point in 2-D by either its rectangular

coordinates (x, y) or its circular coordinates (r, θ). For convenience we present
the two systems imposed on the same graph in this figure.
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Combined portrayal of the rectangular and circular coordinate systems.

From this it may be seen that the geometry of the rectangular coordinate
system is a rectangular grid (square if Cartesian), while the geometry of the
circular coordinate system would be concentric circles of radiusm∆r and "pie"
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wedges of angle n ∆θ. This is shown in this figure.
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Circular coordinate system showing the geometry. Theta goes from zero to
two pi radians.

We may also see that the specific coordinate values are related by

r =
p
x2 + y2, (2.1)

θ = arctan
³y
x

´
,

x = r cos (θ) ,

y = r sin (θ) .

If we think about this and take the coordinate axes as a given, then the
combination of the coordinate system and the point may be viewed as forming
a right triangle where the projection of the point onto the x-axis is the base and
the projection of the point onto the y-axis is the height. Thus, we may specify
the position of the point either as the base and the height of the triangle,
or as the hypotenuse and the angle (between the hypotenuse and the base,
sometimes called the included angle.)
Further, we note that we need two coordinate values to specify the position

of a point in 2-D. This is a general rule. If a space has n dimensions, then we
need n coordinate values to specify a position in the space.

2.1.3 Spatial Units of Measure

As we said previously, the other half of the measurement system is the units
of measure. In essence, what are the units the coordinate axes are divided
into? For spatial measurements, the units are usually called units of length,
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and there are two major systems of length units, the British (Engineering) and
the Metric.
The basic units of the British system are the inch, the foot (plural feet),

and the yard, which are related by

• 12 inch (in.) = 1 foot (ft.),
• 3 feet = 1 yard (yd.)

There is also a unit called a (land) mile (which is different from a sea or
nautical mile,) that is related by

• 5280 ft. = 1 mile (mi.)

It may immediately be seen that the British system of measurement is
not very well ordered. This is largely due to its development over time as a
practical system of measurement. As such it was not intended as a scientific
system of measurement, It is still in use today in the United States, primarily
for economic and social reasons
The other system, the metric system, was developed expressly for scientific

purposes. It is used throughout the world as a scientific system of measurement
and as a general system of measurement outside the United States. The basic
length units of the metric system are the millimeter (mm.), the meter (m.),
and the kilometer (km.), related by

• 1.0 mm. = 10−3 m.,

• 1.0 m. = 10−3 km.

The regularity of the system as well as its applicability in measurement is
thus obvious. The two systems are related by

• 25.4 mm ' 1.0 in.
• 1.0 m. ' 39.37 in.

We shall return to our consideration of units of measurement later. For
now, we turn back to our consideration of coordinate systems.

2.1.4 Three Dimensional (3-D) Spatial Coordinate Systems

To make the leap from 2-D to 3-D we need only add another axis (call it "z")
to the existing x- and y-axes.
Ah, but it isn’t quite that easy because there are two ways we can add the

axis. If we consider the 2-D rectangular coordinate system, with the (positive)
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x-axis being horizontal in the page, and the (positive) y-axis being vertical
in the page, then do we append the (positive) z-axis, which we want to be
perpendicular (orthogonal) to the other two, to point into the page or out of
the page?
For a reason that we shall demonstrate by subsequent example, we want

the latter. That is, we want the (positive) z-axis to come out of the page.
The reason we want this is because this is what is called a right handed
coordinate system (the other option is left handed.) We want to use right
handed coordinate systems for reasons of convention, not because they are
better than left handed coordinate systems, but just because of the weight of
tradition.

Remark 3 When I was first introduced to 3-D coordinate systems it was in a
room whose walls were made of cinder blocks and whose floor was covered with
squares of linoleum whose edges were quite obvious. Thus, each of the four
(floor) corners of the room formed a graduated (but not Cartesian) coordinate
system (because the linoleum squares were wider than the cinder blocks were
high.)

Now let us visualize for a moment. Go to a corner of the room. Sit down on
the floor so that your legs are together and pointed towards the opposite corner
Sit with your back against the two walls. Now, the boundary line between the
wall on your right and the floor is the x-axis, and between the wall on your left
and the floor is the y-axis, and the boundary line between the two walls is the
z-axis.
Now extend your lower right arm to be parallel to the x-axis line (Its ok

for your arm to almost touch the right wall.) Open your hand and turn it at
the wrist so the palm is away from the wall. Now curl the bottom two fingers
into the palm. Extend the first finger straight ahead and the second finger
perpendicular to the first finger, pointing to the left. Now raise the thumb.
Your hand should not look like the figure.

Extension of the first two fingers and thumb of the right hand

Envision now that the first finger represents the x-axis, the second finger the
y-axis, and the thumb the z-axis.
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Hence, a right handed coordinate system.
Now straighten the fingers of your hand. Keep the back of the hand aligned

to the right wall, and partially curl your four fingers until the tips point out of
the wall. Now say the words"x cross y into z." We shall explain the meaning
of this shortly.3

Consider a point in the 3-D coordinate system. It is a given that to specify
its position in space we must measure the projection of this point’s position
onto each of the three axes. Thus, we may measure the coordinate values
(x, y, z), at least in a rectangular coordinate system (yes, its still called that
even in 3-D.)
As we have noted previously, we may specify the point’s position by sev-

eral forms of these three numbers. We may, for example, again use triangle
constructions as we have before. Construct a right triangle with three points:
the origin, the point under consideration, and the projection of that point onto
the z-axis. We may designate the hypotenuse as r and the included angle as θ,
as before, except that now we note that θ has range [0, π] where it had range
[0, 2π] in the circular coordinate system.
This only defines two numbers however. If we now project the point under

consideration into the x-y plane, and define another triangle, this time with
angle φ (range [0, π]) with respect to the x-axis , then the combination (r, θ, φ)
specifies the position of the point under consideration. Both of these coordi-
nate systems are shown in the figure.
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Structure of 3-D rectangular and spherical coordiante systems

This latter coordinate system is called the spherical coordinate system be-
cause of its geometry, part of which is nested spheres of radius m ∆r. The
rest of the geometry is somewhat more complicated and we shall discuss this
in some depth shortly.
Obviously, the geometry of the rectangular 3-D coordinate system is rec-

tangular boxes, unless the system is Cartesian, when it is cubes.

3For those concerned, this has no religious significance, only mathematical.
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We may easily see from this figure that the relationship between the two
coordinate systems is straightforward and the demonstration of the following
relationships is left for the student. For the spherical coordinate system, we
have

r =
p
x2 + y2 + z2, (2.2)

cos (θ) =
z

r
,

tan (φ) =
y

x
.

For the 3-D rectangular coordinate system, we have

x = r sin (θ) cos (φ) , (2.3)

y = r sin (θ) sin (φ) ,

z = r cos (θ) .

2.1.5 Temporal Units of Measure

The clinker in the metric system is its temporal units. Indeed, both the metric
and British system use the same basic measure of time, the second. The basic
relationships and units of time are:

• 60 seconds (s.) = 1 minute (min.),
• 60 min. = 1 hour (hr.),
• 24 hours = 1 day,
• 365 days = 1 (calendar) year,4

• 365.25 days = 1 (sidereal) year.
Because of this we note that any coordinate system that includes time

directly is inherently non-Cartesian.

2.1.6 Other Units of Measure and Coordinate Systems

As we have seen in our consideration of graphing in the previous chapter, we
may define all manner of coordinate systems, such as x and f (x). The units of
measure of x and f (x) may be different, in which case the coordinate system
cannot be Cartesian. Nonetheless, such coordinate systems are useful as we
shall see as we proceed. In the main however, we shall primarily make use of
spatial coordinate systems.

4Every fourth year, unless the year is evenly divisible by 100 and not 400, has 366 days.
Every year evenly divisible by 400 also has 366 days.
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2.2 Some Basic Terminology

At this point it seems useful to discuss some basic terminology. We take as a
given that the reader knows what an observation is, and expand from there. An
experiment is one or more observations of some phenomena under controlled
conditions. The observations of an experiment may be negative in the sense
that nothing is observed and they may be indirect in that the phenomena may
be sensed by some piece of equipment rather than directly with the human sense
organs. Ideally control means that all aspects of the experiment are observed
and quantitatively measured, and variation is limited to a single cause and a
single effect.

A model is an informational representation of an observed phenomena.
While a model may be linguistically descriptive, it is preferred that it be math-
ematical and/or logical in nature. A model is different from a simulation in
the sense that a model is used in a simulation to produce numbers.

Hypothesis, theory, and law are statements of operation of one or more
observable phenomena. The distinction among the three largely depends on
how extensively they have been tested by experiment. An hypothesis will have
the least testing and usually has a tentative aspect, being advanced to explain
several observations. A theory will be extensively tested and shown to have
broad applicability, but still need to be subjected to additional testing. A law
will also be extensively tested and held to be generally applicable, but largely
beyond further testing.

In modern usage, theory is the more commonly used term. Because all
theory is seen as limited and transitory, the use of the term law has largely
fallen away although legacy laws are still called such.

While the terms model and theory are sometimes used interchangeably, it
is important to recognize that theory is somewhat the more definite in that it
implies some explanatory cause and effect relationship.

2.3 Structured Variables

Up until now we have dealt with variables that only have enough structure to
hold one number. Now we consider variables that may hold more than one
number.
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2.3.1 Matrices and Arrays

Consider a point in 3-D space. In a rectangular coordinate system, this point
has coordinates (x, y, z). Now, let us consider a variable, which we name [R]
that can hold three numbers. We may use this variable to hold the coordinates
of a point. Let us call this type of variable a matrix (plural matrices.) if it
can contain either specific values or variables (as we have known them so far,)
and an array if it can only hold specific numbers.
Now let us specify that a matrix (array) can have a structure. In particular,

we may think of it as having dimensions, akin to a coordinate system, except
that we will always arrange the structure like a rectangle, and the structure
will be ordered by integer (counting) numbers. For example, if the structure
is two dimensional, then we have a variable that is structured like a set of
pigeonholes. If the variable is two dimensional we say that it has rows and
columns, and if it is one dimensional, it either has only one row (but several
columns) and is called a rowmatrix, or has only one column (but several rows)
and is called a column matrix.
For most of what we shall be doing, we shall only be dealing with matrices

with one or two dimensions. The matrix [R] thus is either a column or a
row matrix with three components. We designate these components of [R] as
Ri, i = 1..3, although the number of components may be as large as desired.
A matrix [S] that is two dimensional has components Sij, i = 1..I, j = 1..J . If
I = J then we say that the matrix is square.
We may define addition of matrices by

[S] = [U ] + [V ] , (2.4)

which is meaningful only if the dimensions and number of components for each
dimension match. In that case, we have the relationship

Sij = Uij + Vij ∀i, j (2.5)

which defines the addition operation for matrices and arrays. Subtraction is
defined similarly.
Multiplication is more complicated, as we have to designate which dimen-

sion on each array is being multiplied. If this is not specified, then the last
dimension of the first multiplying matrix is multiplied by the first dimension
of the second multiplying matrix. We may designate this as

[S] = [U ]× [V ] , (2.6)

although the symbols • or ∗ may be used, or occasionally no symbol at all.
The student should pay careful attention to the convention used. The actual
multiplication at the component level is defined by

Sik =
JX

j=1

UijVjk∀i, k. (2.7)
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Obviously, the number of components of the multiplied dimension of each ma-
trix must be the same if the multiplication is to have meaning.
We may define the transpose [A]T of a matrix [A] at the component level

as
AT
ij = Aji. (2.8)

This operation does not care about the number of dimensions or number of
components per dimension. In effect, it turns a row matrix into a column
matrix and visa versa.
Division is not defined for matrices or arrays. However, we do define the

inverse matrix [A]−1 by

[A]× [A]−1 = [A]−1 × [A] = [1] , (2.9)

where [1], which is called the identity matrix, is defined to be the matrix
whose components have value one if all of the indices of that component are
equal, and zero otherwise. Obviously this definition is most meaningful if the
matrix is square. From this we may have the operation

[S] = [U ]× [V ]−1 , (2.10)

which is comparable to division. We note in passing that only certain matrices
have inverses but the elaboration of the conditions of speciality is left for a
later maths course.

2.3.2 Vectors

If we now associate a coordinate system with matrices, we may define a type of
structured variable called a vector. While vectors may be transformed from
one coordinate system to another, the operations on them and using them
are usually specific to a given coordinate system. For our purposes we shall
concentrate on the 3-D rectangular and spherical coordinate systems.
As a matter of definition, vectors are a subset of a class of mathematical

objects called tensors. Vectors bear the same relationship to tensors that row
and/or column matrices bear to matrices in general. Tensors are described by
rank, which may be thought of as the number of dimensions. Thus, a vector
is a tensor of rank one. Our previous variables, which could only hold one
number, were tensors of rank zero, and are called scalars.
Tensors are mathematical transformation objects. A scalar transforms a

point into itself. A vector transforms a point into another point. A tensor of
rank two transforms a vector into another vector.

Vector Composition and Arithmetic

A vector is usually written with a subscripted or superscripted tilde, V
∼
oreV , or arrow, V

→
or
−→
V . The latter is the older notation, the other three more
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contemporary. A second rank tensor may be written similarly with either two
tildes or a double headed arrow.
A vector may be written as a series

V
∼
=

IX
i=1

Vibei, (2.11)

where I is the number of dimensions in the coordinate system, two if 2-D, three
if 3-D, and the bei are called basis vectors. The b which is called a "hat" in
colloquial use, indicates that the vector is a unit vector.
We can define addition and subtraction in the usual way ala

W
∼

= U
∼
+ V
∼

(2.12)

=
IX

i=1

Uibei + IX
i=1

Vibei
=

IX
i=1

(Ui + Vi) bei.
There are two types of multiplication that we shall be concerned with, scalar
and vector. These are colloquially referred to as the dot and cross products,
respectively. The dot product is defined by

W = U
∼
• V
∼

(2.13)

=
IX

i=1

Uibei • JX
j=1

Vjbej
=

I,JX
i,j=1

UiVjbei • bej,
where obviously the two vectors must have the same number of components
(dimensions.) The magnitude of a vector is defined by¯̄̄

W
∼

¯̄̄
=

q
W
∼
•W
∼

(2.14)

=

vuut I,JX
i,j=1

WiWjbei • bej.
A unit vector is one that has unit magnitude.
In an orthogonal coordinate system, the basis vectors are orthogonal and

unit, so bei • bej = δij, (2.15)

14 MATHS 2: CLOSING IN



where the δij, which is called the Kronecker delta function, is defined by

δij =

½
1, i = j

0, i 6= j
. (2.16)

From this we may see that the dot product, equation 2.13 reduces to

U
∼
• V
∼
=

IX
i=1

UiVi, (2.17)

and the magnitude, equation 2.14 reduces to

¯̄̄
W
∼

¯̄̄
=

vuut IX
i=1

W 2
i .

The cross (vector) product is defined by

W
∼

= U
∼
× V

∼
(2.18)

=

I,JX
i,j=1

UiVjbei × bej.
At this point our saying "x cross y into z" comes into play. Again, we must
have an orthogonal system, from whence we define

bei × bej = ½ bek; i, j, k symmetric
−bek; i, j, k antisymmetric . (2.19)

By this we mean that for a 3-D rectangular coordinate system where x, y, z
are represented by the indices 1, 2, 3, any form of i, j, k that keeps the order of
the coordinate indices (= 1, 2, 3; 2, 3, 1; 3, 1, 2) is symmetric and any that does
not keep the order (reverses a pair of index values) (= 1, 3, 2; 3, 2, 1; 2, 1, 3) is
antisymmetric. Any combination with two indices equal is zero.
We sometimes designate the basis vectors of a 3-D rectangular coordinate

system as bx, by, bz, or bi,bj,bk. The cross products are specifically
bx× by = bz (2.20)by × bx = −bzby × bz = bxbz × by = −bxbz × bx = bybx× bz = −by.

As with matrices, vector division is not defined per se, but we can perform
the operations

W =
U
∼
• V
∼¯̄̄

V
∼

¯̄̄2 , (2.21)
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or

W
∼
=

U
∼
× V

∼¯̄̄
V
∼

¯̄̄2 . (2.22)

The basis vectors of the spherical coordinate system, br,bθ, bφ, which are also
orthogonal, may be given in terms of the rectangular coordinate system basis
vectors as

br = bx sin (θ) cos (φ) + by sin (θ) sin (φ) + bz cos (θ) (2.23)bθ = bx cos (θ) cos (φ) + by cos (θ) sin (φ)− bz sin (θ)bφ = −bx sin (φ) + by cos (φ) .
The inverse relationships are

bx = br sin (θ) cos (φ) + bθ cos (θ) cos (φ)− bφ sin (φ) (2.24)by = br sin (θ) sin (φ) + bθ cos (θ) sin (φ) + bφ cos (φ)bz = br cos (θ)− bθ sin (θ) .
Demonstration of these will be left to the student.

Vector Functions

We may consider the coordinates of any coordinate system as variables. Thus,
for the rectangular and spherical coordinate systems, we may have x, y, z or
r, θ, φ as variables. We may thus consider scalar functions of any or all of these
variables as f (x, y, z) or f (r, θ, φ). Normally, we will not intermix coordinate
variables of different systems although exceptions do occur. Further, it is
perfectly acceptable to transform from one coordinate system to another, as
we shall demonstrate shortly.
We may also consider vector (or tensor) functions as

f
∼

³
R
∼

´
=

3X
i=1

fi
³
R
∼

´bei, (2.25)

in 3-D space, where the fi may be expressed in any useful coordinate system.
Usually, the function is expressed in the same coordinate system as its variables.
Thus, we would write

f
∼

³
R
∼

´
= fx (Rx, Ry, Rz) bx+ fy (Rx, Ry, Rz) by + fz (Rx, Ry, Rz) bz, (2.26)

or

f
∼

³
R
∼

´
= fr (Rr, Rθ, Rφ) br + fθ (Rr, Rθ, Rφ)bθ + fφ (Rr, Rθ, Rφ) bφ. (2.27)
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2.3.3 Vector Calculus

Arrays do not have a calculus, since as specific number holders they are, in
effect, constants. Matrices in the sense that they are holders of variables, may
have a calculus. The calculus of variable matrices however, is so similar to
that of vectors that we shall not belabor both here, but concentrate on the
calculus of vectors, which we shall use much more frequently. In most cases,
the techniques of both finite and infinitesimal calculus are applicable, although
if we do not qualify explicitly, we are usually using the infinitesimal version.

Differentials

Since we are dealing with a multi-dimensional system, we may have multi-
dimensional differentials. For example, in the rectangular system, we have
either two or three single dimensional differentials to use, dx, dy, dz. In 2-D,
the area differential dArea = dx dy, but in 3-D can be any combination of
three differentials that corresponds to the geometry of the situation at hand.
For example, if we want to know an area perpendicular to the x-axis, then
dArea = dy dz. In 2-D there is no volume differential, but in 3-D, dV ol =
dx dy dz.
The situation is somewhat more complicated in the circular and spherical

coordinate systems since one (two) of the variables are angles. In this case, a
bit of drawing comes in handy as in this figure.

X-A
xis

Z-
Ax

is

Y-Axis

z

r

x

y

ρφ

θ

dr

dθ

r dθ

dφ

r sin θ dφ

Construction of the differential elements in the 3-D spherical coordinate
system

In this case we see that while the differentials of each variable are dr, dθ, dφ, the
differential (infinitesimal) lengths associated with them are: dr, r dθ, r sin (θ) dφ.
The first is fairly obvious since it is itself a length. The second follows from
rotating r through an angle dθ giving us an arc of length r dθ. The third
follows from rotating ρ through an angle dφ, which gives us an arc of length
ρ dφ. Since ρ = r sin (θ), this is just r sin (θ) dφ.
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The volume differential is then obviously

dV ol = (dr) (r dθ) (r sin (θ) dφ) (2.28)

= r2 sin (θ) dr dθ dφ.

and again, the area element depends on what orientation of area we are inter-
ested in. The most common one considered in the spherical coordinate system
is the area of a section of sphere. Under these conditions, the radius is fixed,
so the area differential is just

dArea = sin (θ) dθ dφ. (2.29)

If we make use of the (infinitesimal) exponential function, we may simplify
these somewhat. One of the greatest secrets of math is the relationship

eiψ = cos (ψ) + i sin (ψ) , (2.30)

knowledge of which is usually reserved for senior or graduate courses in complex
variables. And yes, the i in this case is

√−1, so we are dealing with complex
numbers.
If we now take the derivative

d

dψ
eiψ = ieiψ, (2.31)

and substitute equation 2.30, we obtain

d

dψ
[cos (ψ) + i sin (ψ)] = i [cos (ψ) + i sin (ψ)] , (2.32)

where we have inserted the braces for clarity. Now, let us resolve the RHS of
this equation, giving us

d

dψ
[cos (ψ) + i sin (ψ)] = [i cos (ψ)− sin (ψ)] . (2.33)

We may now decompose this by equating separately real and imaginary parts
of the equation since they are independent. This gives us

d

dψ
cos (ψ) = − sin (ψ) , (2.34)

d

dψ
sin (ψ) = cos (ψ) .

Let us now take the first of these two equations, and using the rare oppor-
tunity to treat differentials as simple variables, we may rewrite this as

d cos (ψ) = − sin (ψ) dψ, (2.35)
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from which we may rewrite equation 2.28 as

dV ol = −r2 dr d cos (θ) dφ. (2.36)

This can be used handily on occasion, as we shall shortly demonstrate when we
discuss angle units of measure. Note particularly the minus sign. As we have
indicated, one of the few times we may treat differentials as simple variables
is when we are changing variables and must relate the differential of the
old variable to the differential of the new variable. Sadly, the whole matter of
change of variable is an art form that we shall only show here and the student
must await advanced math courses to see in comprehensive detail.

Vector Derivatives

In the previous chapter we introduced the idea of a derivative of a function
f of a single variable x, which we denoted as df (x) /dx . Now, we extend
the concept to functions of several variables. If we have a function f (x, y, z),
then we may define the partial derivative of f with respect to x, denoted by
∂f (x, y, z) /∂x , by

∂

∂x
f (x, y, z) = lim

∆x→0
f (x+∆x, y, z)− f (x, y, z)

∆x

¯̄̄̄
y,z fixed

. (2.37)

This is called the partial derivative because the function depends on more
than one variable and thus a given partial derivative addresses only one part
or variable.
From this we may proceed to the basic vector derivative operations. These

are more structured than what we have seen in previous discussion largely
because of the structured nature of the variables and/or functions.

Gradient The gradient is a derivative (sometimes called differential) oper-
ation usually performed on a scalar function. It can be performed on a vector
but we shall not deal with such except for one special case, which follows
subsequently.
We shall be using the symbol ∇, called the ’del’ for these operations. In

the rectangular coordinate system, the form of del does not vary with applica-
tion, again because all of the coordinates have the same dimensional form of
length. This is not the case for the spherical coordinate system where two of
the coordinates are angles.
In the rectangular coordinate system, the gradient of a scalar function is

defined by

∇
∼
f =

µbx ∂

∂x
+ by ∂

∂y
+ bz ∂

∂z

¶
f. (2.38)

In the spherical coordinate system the gradient of a scalar function is defined
by

∇
∼
f =

Ãbr ∂

∂r
+
bθ
r

∂

∂θ
+

bφ
r sin (θ)

∂

∂φ

!
f. (2.39)
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As previously stated, one usually casts the function in terms of the appropriate
(matching) coordinate system, in this case as either f (x, y, z) or f (r, θ, φ),
respectively.

Divergence The divergence is a derivative operation that is only defined on
a vector (tensor) function. In the rectangular coordinate system, the divergence
of a vector function is defined by

∇
∼
• f
∼
=

µbx ∂

∂x
+ by ∂

∂y
+ bz ∂

∂z

¶
• f
∼
, (2.40)

which we see has the opposite effect of the gradient in that the divergence
transforms a vector into a scalar while a gradient transforms a scalar into a
vector. In the spherical coordinate system, the divergence is defined by

∇
∼
• f
∼
=

1

r2 sin (θ)

∙
sin (θ)

∂

∂r

¡
r2fr

¢
+ r

∂

∂θ
(sin (θ) fθ) + r

∂

∂φ
fφ

¸
, (2.41)

which we see by comparison with equation 2.39 has considerably different form.
The divergence compares to the dot or scalar vector product.

Curl In the same fashion, the curl is a derivative operation that corresponds
to the cross or vector product. In the rectangular coordinate system, the curl
is defined by

∇
∼
× f
∼
=

µbx ∂

∂x
+ by ∂

∂y
+ bz ∂

∂z

¶
× f
∼

(2.42)

= bxµ ∂

∂y
fz − ∂

∂z
fy

¶
+ byµ ∂

∂z
fz − ∂

∂x
fz

¶
+ bzµ ∂

∂x
fy − ∂

∂y
fx

¶
.

In the spherical coordinate system, the curl is

∇
∼
× f
∼
= br ∙ ∂

∂θ
(r sin (θ) fφ)− ∂

∂φ
(r fθ)

¸
(2.43)

+r bθ ∙ ∂

∂φ
fr − ∂

∂r
(r sin (θ) fφ)

¸
+r sin (θ) bφ ∙ ∂

∂r
(r fθ)− ∂

∂θ
fr

¸
.

Divergence of the Gradient Because the gradient transforms a scalar into
a vector, and the divergence transforms a vector into a scalar, the combination
of the two can transform a scalar into a scalar. In the rectangular coordinate
system this is

∇
∼
•∇
∼
f =

µ
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

¶
f, (2.44)
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while in the spherical coordinate system it is

∇
∼
•∇
∼
f =

1

r2 sin (θ)

∙
sin (θ)

∂

∂r

µ
r2

∂

∂r
f

¶
+

∂

∂θ

µ
sin (θ)

∂

∂θ
f

¶
+

1

sin (θ)

∂2

∂φ2
f

¸
.

(2.45)
A shortcut notation for the divergence of the curl is

∇
∼
•∇
∼
= ∇2, (2.46)

where ∇2 is called the Laplacian.

Curl of the Gradient Similarly, we may calculate the curl of the gradient,
transforming, in another way, a scalar into a vector. This derivative operation
is

∇
∼
×∇

∼
f = 0

∼
, (2.47)

where 0
∼
is a vector all of whose components are zero. Note that this operation

is independent of coordinate system. The vector 0
∼
is called the zero vector.

Divergence of the Curl The last derivative operator we shall consider is
the divergence of the curl. This is

∇
∼
•∇
∼
× f
∼
= 0, (2.48)

which is also independent of coordinate system except for the form of the vector
function, Note that this operation transforms a vector into a scalar.

More on Partial Derivatives It should go without much effort that if a
function (scalar or vector) does not depend on a coordinate variable, then the
partial derivative with respect to that variable is zero.
If we have

f (x, y, z) =
p
x2 + y2 + z2, (2.49)

then all three of the (first) partial derivatives ∂f (x, y, z) /∂x , ∂f (x, y, z) /∂y ,
∂f (x, y, z) /∂z are nonzero. If we transform the function into the spherical
coordinate system, we get

f (r, θ, φ) = r. (2.50)

In this case, ∂f (r, θ, φ) /∂r 6= 0, but ∂f (r, θ, φ) /∂θ , ∂f (r, θ, φ) /∂φ are both
zero since the function does not explicitly contain either angle coordinate.
Thus, we may write the gradient in the rectangular coordinate system as

∇
∼
f =

1p
x2 + y2 + z2

(bxx+ byy + bzz) , (2.51)
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and in the spherical coordinate system as

∇
∼
f = br ∂

∂r
r, (2.52)

= br.
It may be useful in considering this for the student to compare equation 2.49
with equation 2.2.

Vector Integrations

Just as there are several different vector derivative operations, there are several
different vector integral operations. These are in addition to integrals that take
on the geometry of the particular coordinate system such asZ

V

f (x, y, z) dx dy dz, (2.53)Z
V

f (r, θ, φ) r2 sin (θ) dr dθ dφ.

The subscript "V" on the integral sign indicates that a particular volume,
usually in the form of definite limits, will be specified but for now is treated as
a variable. Area integrals also fall in this category. Technically these integrals
are not vector integrals although the function may be a vector function so the
distinction can become quite moot.
But we may also have integrals likeZ

C

f dR
∼
, (2.54)Z

C

f
∼
• dR

∼
,Z

C

f
∼
× dR

∼
,

where the subscript "C" on the integral sign signifies that the integration is to
be performed on a path or contour that is to be specified.

Gauss’ Theorem Gauss’ Theorem, which we will state only by its mathe-
matical form, is Z

S

f
∼
• dσ

∼
=

Z
V

∇
∼
• f
∼
dV ol, (2.55)

where the subscript "S" signifies a surface (area) in or on the volume "V"
specified by the vector σ

∼
. This theorem is a means of of interchanging a volume

integral for a surface integral, or visa versa.
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Stokes’ Theorem Stokes’ Theorem is expressed asZ
S

∇
∼
× f
∼
• dσ

∼
=

I
f
∼
• dR

∼
, (2.56)

where σ
∼
is again a vector describing a surface. The integral

I
dR
∼
indicates an

integration along a closed path on the surface described by the vector R
∼
. This

theorem is a means of of interchanging a surface integral for a line integral, or
visa versa.

2.4 Angle Units of Measure

There are two types of angles, planar and solid angles. The planar angles,
which are usually just called angles are the ones we think of in the context of a
right triangle, or a circular 2-D coordinate system. These (planar) angles are
(can be) defined on a unit circle, that is, a circle whose radius is one unit (of
something) long. (We don’t care very much about what the unit is, as we shall
shortly see.)
A unit circle has a circumference of 2π units, and we define the angle of a

full circle to be 2π radians. So if we specify an angle θ on the unit circle as
shown in this figure,

θ

Definition of Angle on a Circle

then we may see that the angle may be calculated as the length of the arc that
the angle forms on the circumference of the circle divided by the radius of the
circle. This is why we don’t care very much whether we use a unit circle since
we will be dividing a length (the arc length) by another length (the radius.)
We also see why there are 2π radians, since the circumference of the circle is
2π times the radius of the circle.
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When dealing with mathematical representations of angles, such as with
the trigonometric functions, we must express angles in radians. When we do
computations however, we may be able to use other units of measure. For ex-
ample, most hand calculators allow us to specify the units of measure of angle,
usually as radians, degrees, or grads. This is possible because the calculator
does not use the trigonometric functions directly, but interpolates from a stored
table of functional specific values.
In the computational context then, we may specify other units of measure

of angle. As we have indicated, the two most common such are degrees (360
to a circle) and grads (400 to a circle). This gives us the relationships between
these and radians:

• 2π radians = 360 degrees = 400 grads.

We may also specify an angle Ψ as an integral

Ψ =

Z θ2

θ1

dθ, (2.57)

= θ2 − θ1,

as indicated in this figure.

θ
1

θ
2

ψ

Specification of an angle as the difference between two other angles

We recognize the differential dθ as the infinitesimal of angle where r dθ is the
infinitesimal of arc length. The interpretation as angle follows trivially for the
planar angle, but as we move to the solid angle, this integral provides a basis
of comparison for the solid angle.
The surface of a sphere has an area of 4π r2, so if we divide this by the square

of the radius, we get a total solid angle of 4π steradians. For a lesser solid
angle, we return to the angular surface differential for the spherical coordinate
system as extracted from equation 2.36 as

dArea = −r2d cos (θ) dφ. (2.58)
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In keeping with our previous, albeit trivial, planar angle definition, we may
now define a solid angle Ω in term of an integral over the surface of the sphere
(of set radius) bounded by four (two pairs) of planar angles,

Ω =
−r2 R θ2

θ1
d cos (θ)

R φ2
φ1

dφ

r2
(2.59)

= [cos (θ1)− cos (θ2)] [φ2 − φ1] ,

where we take θ1 < θ2 and φ1 < φ2 as sizes are defined in the coordinate
system.

2.5 Trajectories

In the John Wayne movie "Hitari", there is a segment where the nerd character
’Pockets’ (played by Red Buttons) has built a rocket to carry a net across a
tree to entrap some monkeys. When he is asked about the placement of the
rocket he replies that he has studied physics and knows about, among other
things, "trajectors".
We have to assume here that the character has somehow lumped together

the terms "vector", which we have already discussed, and "trajectory", which
we are about to take up, and which, as we shall see, are related via vectors. The
common definition of a trajectory is the path (of motion) taken by something
over time.

2.5.1 The Trajectory of Physics

In a sense, trajectories are both a fundamental topic of physics, and a char-
acteristic of how physics works, so this section will be a bit jumbled as we
introduce both. In its most common usage, a trajectory is the path of some-
thing in 3-D space over time. If we think about this statement, we notice
quickly that we are really talking about a four-dimension system with three
dimensions being spacial (length units) and the fourth temporal (time units.)
Strictly speaking, this four dimensionality is indeed the case, and we shall often
draw graphs using the four dimensional coordinate values. Normally however,
we shall speak of trajectories as being 1-D, 2-D, or 3-D in their spatial com-
ponents only. (Some 3-D trajectories are really only 2-D - wait for it!) The
exceptions will usually only come when we treat with Relativity where time
does not behave parametrically.
What do we mean by parametric time? Strictly put, it means that the

rate of change of time is constant, that time always changes at the positive
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rate of one second per second, never 0.9 or 1.1.Because we are imbedded in
time, we have no way to independently measure time and the assumption of
constant time rate is the simplest assumption that we may make. (Thus,
parametric time is basically the simplest assumption that we can make about
time to handle it mathematically. We shall discuss the importance of simplicity
shortly) We may have two observers measure a segment of time independently,
with identical time measuring devices, and except under relativistic conditions,
they will both measure the same amount of time, consistent with the error of
measurement. In a relativistic environment, where one observer is accelerated,
then they will measure different amounts of time, but we always take one of
the observers to be the basis of comparison since we are embedded in time and
cannot measure it independently.
When we are not dealing with a relativistic situation, and that will be the

unexpressed norm in this book, we take everyone to be embedded in the same
stream of time and we measure the progress of time by observing some physical
process.
The same also applies in making spatial measurements because, again, we

are embedded in space. We may not step outside space but we may make com-
parative measurements between two observers although, again, we must take
one of the observers to be the basis of comparison. Except under relativistic
conditions, the two should observe the same measurement.
Now we get holistic for a moment. All conditions are relativistic if Relativity

theory is correct. However, sometimes the situation is such that the effect of
relativity is quite small and we can safely neglect it in most observations.
These conditions are those under which we say that relativistic conditions do
not apply.
It is at this point that we return to our earlier admonition that "To fully

and accurately learn physics, the ideas and concepts of physics must first form
a basis on their own for viewing the world." Physics is a subject of some
complexity, and one of the tricks that we play to make it more practicable
is to introduce approximation as a disciplined tool. Simply put, when an
approximation may be made that will not cause significant (but quantifiable)
inaccuracy, but will simplify the modeling and understanding of the situation,
then we may make use of the approximation. In this case, if the acceleration
environment is not strong and velocities are not too high, then we may safely
treat the situation without concern for Relativity.
This is hard to grasp, and not just because we are dealing with concepts that

we have not discussed such as velocity, acceleration, and relativity. Nonetheless,
this is necessary, that we learn to understand and think about physics in the
context of the physics itself, and not in the context of the environment we have
grown up in. In the latter context, the response would be that stating that
we cannot independently measure time and space would be viewed as rubbish
because we have clocks and yard sticks. Nonetheless, if one thinks about it, one
realizes that if space is non-linear (e.g.,) then the non-linearity applies equally
well to the yard stick as to the thing we measure with it. Thus, to proceed
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with measurement, and physics, we have to think about this in term of physics
first, and then later in more normal terms of human experience.
We have to make these assumptions about the linearity of space and time

so we may develop mathematical models of how things behave in space and
time. The assumption of linearity is the simplest such that we may make, and
it does break down under observation. That is where Relativity comes in, for
those situations when space and time are not linear.
There are two points we need to consider here. The first is that simple

models provide a basis for the development of more complicated models, which
reduce to the simple models under the appropriate conditions and the math-
ematical representation of those conditions. In this sense, the models, which
are the body of physics, are self-consistent. This does not "prove" that the
physics is correct, but it does demonstrate an internal agreement with what
we observe of the universe.
Second, there are observations that the models do not agree with by a

margin that exceeds the accuracy of our measurements (observations.) This
indicates that the models of physics are not complete and there is yet work to
be done in developing new models.
This is the nature of science, of which physics is a part. The goal of science

is understanding of the universe. Science is done by observation and exper-
iment, which are used to build theory, which is used to make predictions or
develop experimental tests of the theory, which are tested by more observation
and experiment, which is used to build theory, through confirmation and em-
bellishment or originality, which ...... in a cycle that continues until all possible
observations and experiments have been made and theory developed. In this
regard, science (and physics) is never perfect because it is never fixed, but is
constantly changing due to the interplay between experiment/observation and
theory.
In a similar sense, this interplay may be viewed as the trajectory of physics

where, over time, we move back and forth from experiment to theory to exper-
iment ....
So fundamental is this that we often distinguish between physicists who

are primarily concerned with experimentation and those primarily concerned
with theory. The distinction is somewhat artificial in that it arises out of
the complexities of doing experiments, which requires specialized knowledge
and skills in the equipment used to perform the experiments, much of which
must be created or built from scratch, and the collection of the data in the
experiments, and of doing theory, which requires specialized knowledge and
skills of the mathematical and other methods of doing theory. The boundary
between the two, of comparing theory to experiment and experiment to theory,
is shared by experimentalists and theoreticians. Both exerimentalists and
theorists are physicists, but differ in what tools they use on a daily basis much
as carpenters who build houses and carpenters who build furniture both do
carpentry but use different tools on a daily basis.
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2.5.2 Trajectories in Physics

Moving now from our discussion of the nature of the practice of physics to a
matter of its content, one of the fundamental concepts of physics is that of the
trajectory. While we may mean by trajectory the path of any variable over
time, the most common use we shall make of the term is still that of the motion
of something in space over time.
This is what much of so-called basic physics is all about; it is often from

the observation of the behavior of things over time (in a quantitative manner)
that we can come to understand how they work. This is the basis of what is
often calledmechanics, which has to do with the behavior of thing under the
application of forces (which we have not yet defined, but wait for it!)
Usually we are concerned with the trajectories of material things, that is

things that are comprised of matter. In this case, we normally are interested
in the vector (3-D space) entities:

• the position;
• the velocity; and
• the acceleration of the thing.
All these are normally taken, at least ultimately, to be functions of para-

metric time.
The position vector, often signified by the symbols R

∼
or r

∼
, is nothing more

than the functional representation of the coordinates of the point where the
"thing" is at a specific value of time. Thus, we may have

R
∼
= bxx+ byy + bzz, (2.60)

in a rectangular coordinate system, or

R
∼
= brr + bθθ + bφφ, (2.61)

in a spherical coordinate system, where the coordinates x, y, z and r, θ, φ are
functions of time t and hence R

∼
is a function of t.

The velocity of the thing, sometimes signified by V
∼
or v

∼
, is simply defined

by

V
∼
=

d

dt
R
∼
, (2.62)

that is, as the (first) time derivative of the position. Similarly, the accelera-
tion, A

∼
or a

∼
, is simply defined as

A
∼
=

d

dt
V
∼

(2.63)

=
d2

dt2
R
∼
.
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By simple inversion of these definitions, we may write integral equations
for the velocity and the position of

V
∼
(t) = V

∼
(t0) +

Z t

t0

A
∼
(t0) dt0, (2.64)

R
∼
(t) = R

∼
(t0) +

Z t

t0

V
∼
(t0) dt0,

where t0 is some specific time, nominally when we begin the observation. We
can combine these two and write one integral equation

R
∼
(t) = R

∼
(t0) +

Z t

t0

"
V
∼
(t0) +

Z t
0

t0

A
∼
(t00) dt00

#
dt0 (2.65)

= R
∼
(t0) +

Z t

t0

V
∼
(t0) dt0 +

Z t

t0

Z t0

t0

A
∼
(t00) dt00 dt0,

where we have carefully renamed the first (acceleration) integration variable
to avoid confusion (yes, it really does - try it!) Since t0 is a specific value, and
thereby V

∼
(t0) must be as well, we may treat these as constants of integration,

and simplify this equation as

R
∼
(t) = R

∼
(t0) + V

∼
(t0) (t− t0) +

Z t

t0

Z t0

t0

A
∼
(t00) dt00 dt0. (2.66)

Speed

The term speed is often used with respect to trajectories. Sadly, the term has
several definitions that are not always precisely associated with their specific
use.
The most common definition of speed, often designated by S or s, is the

(instantaneous) magnitude of the velocity

s =
¯̄̄
V
∼
(t)
¯̄̄
. (2.67)

Another common definition of speed is

s =

¯̄̄̄
1

∆t

Z t

t−∆t

V
∼
(t0) dt0

¯̄̄̄
, (2.68)

which is technically an averaged (over some time interval) speed. Note that
this is not the same as either

1

∆t

Z t

t−∆t

¯̄̄
V
∼
(t0)
¯̄̄
dt0,

or s
1

∆t

Z t

t−∆t

V
∼
(t0) • V

∼
(t0) dt0.
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A third common definition is

s =
¯̄̄
V
∼
(t) • bd¯̄̄ , (2.69)

which is technically the component of projection along the direction represented
by the unit vector bd. In this case the notation | | indicates absolute value since
the quantity inside it is a net scalar. This type of speed is that measured
by a Doppler radar such as is used by constables to determine the "speed" of
automobiles.
Note that these three speeds do not generally have the same values. The

first and second definitions are the same result only if V
∼
(t) is a constant, or

by happenstance. The first and third are the same only if

V
∼
(t)× bd = 0

∼
.

Graphs of Trajectories

Before concluding this somewhat ambiguous discussion of trajectories, we want
to examine a couple of graphs of trajectories. The first such is of two things
moving in 1-D (space) towards each other. The two things do not like each
other and "repel" each other. For the moment, we must leave the nature of
this repulsion undescribed, but we display the trajectory, at least the position
and velocities (which are 1-D vectors and can thus be displayed on a single
planar graph) in this figure.
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Trajectories of two things that repel

From this we may see that the positions (solid and long dashed lines) come
together and then move apart along the direction they entered. We see that the
velocities (dotted lines) start with one positive and one negative and end the
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opposite, with the velocities changing faster the closer the things are together
(the difference in the position vectors.)
If we now plot the velocity of the first thing versus its position, what is

sometimes called a phase plot or graph, in this figure,
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we see that the curve, which is a representation of the trajectory, is open, that
is, it does not close back upon itself.
Now, let us repeat this consideration of a thing that oscillates like the bob

of a pendulum clock. The position and velocity are given in this figure.
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In this we see that the motion, both position and velocity are bounded. This
boundedness is clearer in this figure,
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where we see that the curve closes over itself. We thus call this type of trajec-
tory a closed trajectory.
We need to note something special here. The cycles of the trajectory overlay

each other son that in this plot we see only one line. This one-linedness is not
the general situation with a closed trajectory. Rather, a trajectory is closed if it
is bounded; that is, nowhere does the curve go off to infinity. If we examine the
curves of the open trajectory (two things that repel) above, we see that we can
extend the position curves back to positive and negative infinity, respectively.
We shall elaborate further on the nature of trajectories and of openness and

closedness as we proceed. For now, this is enough for our consideration.

2.6 Frequency Units of Measurement

There is a bit of ambiguity in the units of frequency that arises from the nature
of mathematics. As such, special care is called for when we deal with it.
A closed trajectory is repetitive. By this we mean that the nature of the

motion of the thing repeats itself. This repetition, as we have noted, is not
always a strict repetition of position. When it is, repetitions of the trajectory
overlie each other on a phase graph as in the previous section. Sometimes
however, repetition may not be characterized by a position but by some other
aspect. Common aspects are the points of closest approach to and farthest
departure from the center of the graph (or center of the trajectory.)
Regardless, a closed trajectory repeats itself, and each repetition may be

called a cycle. Each cycle takes the same amount of time and this amount of
time is called the period T of the trajectory. Any activity that is regularly
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repeated in this manner is said to be periodic, which simply means that it
has a period. Obviously, the unit of measure of a period, since it is a time, is
seconds.
The frequency f is defined simply to be the inverse of the period,

f ≡ 1

T
. (2.70)

The unit of measure of frequency, which dimensionally is inverse time, is the
Hertz (Hz), which is named after a physicist who did considerable research on
electromagnetic waves. The quantity ft is just the number of cycles (since
t = 0) that the trajectory has gone through.
This leads us to the ambiguity. The mathematical representation of cer-

tain trajectories uses transcendental functions, usually sine and cosine. This
is equivalent to representing a single cycle as the circumference of a unit cir-
cle. When this representation is used, we have to deal with what is called an
angular frequency ω which is defined as

ω = 2πf (2.71)

=
2π

T
.

Care must be taken to distinguish between the two frequency definitions
lest an error of a factor of 2π result. This may be difficult but is necessary. It
may be helpful to think about whether one is counting cycles (frequency) or a
location on the trajectory (angular frequency.)

2.7 States

One of the ways in which we describe things both mathematically and physi-
cally is by what are often called states. This use of the word does not refer to
a country or a part of a country, but is used in the sense that we associate the
word with some observable characteristic. For example, it is common in the
English language to say that someone is in a state of agitation or depression.
For example, we have characterized trajectories as being open or closed. We

may intend this to say that a thing whose trajectory is closed is in a bound
state because it is constrained to a repetitive path. Similarly, a thing whose
trajectory is open may be said to be in a free or unbound state because it is
not so constrained.
In a like manner, we may describe a penny as having two states when it is

lying on a surface (if we discount or exclude the situation where it is balanced
on its rim) - heads or tails depending on whether Lincoln’s head or memorial
is observable. Alternately, we may say that a thing in motion is in a state of
motion that is characterized by the details of the trajectory, in particular its
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position and velocity. Indeed, we sometimes use the term state vector as a
synonym for trajectory or a position on a trajectory.5

From this, we may infer that states may be continuous or discrete, quan-
tified or qualified, but in some manner always descriptive of the physical sit-
uation. Another way of saying this is that the state of a physical thing is
observable.

2.8 Systems

From time to time, we shall use the term system to refer to something. As with
many of the terms that we use in physics, we will use it somewhat ambiguously,
largely because we will use slightly different definitions that we are not always
precise about explicitly stating.
In general, a system may be only a single thing or a collection of things

that may be treated as either one thing or several things. What makes these
systems is that we may distinguish them from the rest of the universe on the
basis of one or more observables.
In most cases, the quality that defines the system will be one or more states.

For example, the coins in my pocket may comprise a system in that they all
share the same states of heads and tails, and they are distinguished from the
rest of the universe by being in my pocket.
Alternately, we talk about the Solar system which is distinguished from

the rest of the universe by being the collection of all things in orbit (bound
trajectory) around Sol.
The system concept is primarily important in terms of how it influences the

nature of science and physics, in our particular interest. The general approach
in physics may be described by what is often known as the "systems assump-
tion", which is that systems are comprised of subsystems and the observable
behavior of the system may be described by the mechanics of the subsystems
by themselves and in interaction with each other and the rest of the universe.
There are two important pieces of this assumption. One is that the system

is divisible, that it is not so complicated that it must be considered solely as
an entity. This is actually an extension of how we defined system in the first
place and it amounts to assumption that holism can either be decomposed or
adequately approximated by decomposition.
The second important piece is that we first consider the behavior of a sub-

system by itself, and then consider its interaction with the other subsystems
and the rest of the universe. This gives an order to the introduction of com-
plication into the consideration based on how closely the model/theory agrees
with observation.6

5One common usage of state vector is the combination of position and velocity vectors.
6In some systems theories, the definition of the thing that distinguishes the system from
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In effect, this is an application of Ockham’s razor, which variously states
that "Plurality should not be posited without necessity", or "Entities are not
to be multiplied beyond necessity." This rule is named for William of Ockham
(1285-1347), who popularized it. It was introduced into physics largely by
Gallileo Galilei (1564-1642) who performed important experiments and devel-
oped early theory of mechanics and cosmology.
The basic idea of Ockham’s razor is that if presented with two theories

that explain observed phenomena, the simpler of the two is to be preferred.
A somewhat terser contemporary statement of Ockham’s razor, which often
is sadly separated from its analytical aspects, is "Keep It Simple, Stupid!"
expressed as the acronym "KISS".
In some usages of the system model, the terms input and output are used

as synonyms for cause and effect.
We shall elaborate further on the concept of system as we proceed.

2.9 Randomness

In physics we often speak of different phenomena as being random or deter-
ministic. The latter is somewhat easier to see initially. We say that something
is deterministic if there exists a perfect cause and effect relationship. (In
programming terms, this means an exact IF..THEN relationship.) By this we
mean that if some action is taken (the cause), some result always occurs (ef-
fect.) If I am in a gravitational field and I hold a coin between my thumb and
first finger and out from my body, then when I loosen my grip (the cause or
action), the coin drops to the floor or ground (the result or effect.)
So long as I stay in a gravitational field, and I otherwise always have the

same causative action, the coin will always fall. Indeed, it does not matter
which hand I use, or what type of coin I use, or even (within a limit) how high
above the ground I am. We thus say that the fall of the coin is deterministic.
Now let me curl my fingers and raise my thumb as I did earlier in discussion

coordinate systems. I lower my thumb to rest it loosely in the crook of the bend
of the second joint against the first finger about half way down the thickness of
the finger. Now I rest the coin on top of the first finger centered on the second
joint so that the edge of the thumb is underneath the coin, Now I flick the coin
into the air and observe the state of the coin when it comes to rest (head/tails.)
Now I repeat this several times, say ten or so, each time observing the state of
the coin.
In this case, the coin is either in the head state or the tail state but not

exclusively in either. If I count the number of times the coin is in each state
then after a while the numbers should be close to each other but will not usually

the rest of the universe is the nature of interactions within the sytem versu those between
the system and the rest of the universe.
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be the same. We say that under these circumstances the state of the coin is
random, that is, it is in one or the other of the two states that it may occupy,
but we cannot say definitely which it will be in before we flick the coin. We
may refer to such phenomena as being either random or stochastic.
In such cases, we see that the cause and effect relationship is not perfect

in the sense that we take some action and while the result is usually bounded
in some sense, it is not strict, nor may it be strictly predicted before the fact.
Indeed, in many stochastic situations, we may have no idea of the actual cause,
or the cause may be too complex to characterize, so we get an effective situation
of effect without definite cause.

2.9.1 Probability and Statistics

In dealing with stochastic phenomena we make use of two related bodies of
information, probability and statistics. The relationship of the two is much
like that in physics in that probability corresponds (rather loosely) to theory
while statistics corresponds to experiment.
We use the term probability somewhat ambiguously to mean both a quan-

tity and a theory or body of theory. Unfortunately, this ambiguity is intensified
in that we have to define both in terms of experiment. The quantity probabil-
ity is usually defined in two different ways that are not quite the same under
all conditions. The first of these, which is sometimes called the classical de-
finition, is to take a population (collection) of N things. These N things are
identical in that while each may occupy any one of J states, they all share the
same J states. We then observe, as nearly simultaneously as possible, which of
the J states each of the N things occupies, and total these up as the number
nj of things in each of the J states. The probability that a thing is in the jth

state is then just
Pj ≡ nj

N
. (2.72)

The other definition, which is called the frequency or frequentist defini-
tion, is to observe a single thing for a long time T ,7 and observe the total time
that the thing is in the jth state, tj. Then the probability that a thing of this
type is in the jth state is just

Pj ≡ tj
T
. (2.73)

Often, we should like these two definitions to be the same, that is, that the
probabilities are the same (specific values) for both definitions. We say that
when a system (collection of things) has the same classical probabilities and
frequency probabilities the system is ergodic, and that its distribution and/or
statistics are stationary. (We may sometimes refer to this collection as an
ensemble.)

7Although we are using the same symbol, this is different, in general, from a period.
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Stationary has a special meaning here. To discuss it we must introduce the
idea of inner and outer time scales. The inner time scale, which we may
call ti for convenience, is the time that we spend making an observation of
the system. If we use the classical definition method, then ti is quite short,
but if we use the frequentists definition method, ti = T . The outer time
scale,to, is the time between successive observations (measured from start to
start or finish to finish, but consistently.) Obviously we must have to ≥ ti, but
in general we want to > ti, and often to À ti, but not always. Then after many
observations, many to, if the nj or tj are always the same, consistent with the
error of observation, then we say the distribution (statistics) are stationary.
(We discuss one measure of sameness under moments.)
Many time dependent processes are not stationary. Obviously, any system

that has one or more accumulating states does not exhibit stationary behav-
ior. An accumulating state is one that is permanent once it occurs. A thing in
an accumulating state stays in that state.
This leads us to the concept of a Markov system. We shall use a some-

what restrictive definition here because this is how a Markov system is most
commonly used in physics. The student is warned that other, more general,
definitions of Markov systems exist.
If we have a thing that is known at time t to be in state j, we say that the

thing isMarkovian (or part of aMarkov system) if the probability that the
thing is in state j0, which may include j, at time t0, t0 > t, depends only on
which state it is in now, but not previously. Thus, the state of the thing j00 at
time t00, t00 < t, does not enter into the probability of what state the thing is
in at t0.
We sometimes say that Markov systems have no memory of any previous

state; they are "aware" only of the current state and forget it as soon as they
change states, possibly to the same state. Being Markov and stationary are
independent of each other.
As a matter of terminology, if we repeat some random process and observe

the resulting state, each repetition is usually called a trial. This terminology
is most natural to the frequency definition. If we observe the state of a member
of a population (an ensemble), then this is often referred to as a sample, and
the number of samples we take is called the sample size. When we are dealing
with a sample size less than the population size, then there is some concern over
whether the samples have maintained the random nature of the population.
If we know a population size, and predict how many things occupy each

state, then we make use of probability theory although we may commonly
refer to this as simply probability. The realm of statistics is to take the actual
observations of the states and reconcile them with or develop theory. Often,
we refer to the actual measurements and/or the analyses, as the statistics of
the system.
Probabilities are always associated with observable states. These states

may be either discrete or continuous, from which we describe their probability
characterization as being either discrete or continuous. For our purposes, the
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primary distinction will be whether we must use finite or infinitesimal mathe-
matical techniques.

2.9.2 Random Variables

In this regard we may think of a state as a variable regardless of whether
it is random or deterministic. We may refer to it as a random variable or
a deterministic variable. As such, we talk about the variable having some
particular value that may be a counting number if the states are discrete, or a
real number if the states are continuous.
For example, a coin has two states: 1 and 2; that correspond to heads

and tails (or visa versa.) A position in space may have an infinity of states
and thus be continuous. In such cases we usually talk about the range of the
states, which may be bounded or not. We recognize that this introduces an
ambiguity. For a system of discrete states, a finite number of probabilities
are used and thus definite probabilities exist. Continuous states do not have
such definite probabilities since a line (e.g.,) consists of an infinite number of
points, each of which should have a discrete probability but cannot because
then the sum of the probabilities would itself be infinite. Instead we use the
fiction of continuous mathematics to define probabilities on (e.g.,) segments of
the line. We use this to make our lives easier and the ambiguity will resolve
itself subsequently.
For a set of discrete states {i : i = 1..I} (states "i", where "i" goes from

one to I), we may associate a probability Pi with each state. For continuous
states x, a ≤ x ≤ b (alternately we may write {x |x ⊂ [a, b]} to mean "x" such
that "x" is contained on the bounded interval between "a" and "b", which we
may shorten to {x |[a, b]} when the meaning would not be too ambiguous), we
associate a probability function, P (x), defined mathematically by

P (x) =

Z x

a

p (y) dy, (2.74)

by which we mean that the probability of "x" is actually the probability that
the state of the system is no greater than "x". The function p (y) is referred
to as the probability density function (or pdf), while P (x) is more tech-
nically correctly referred to as the cumulative distribution function (or
cdf.) Notice that for a finite interval of x, [x, x+∆x], we may easily define a
probability that the state is in the interval by P (x+∆x)− P (x).
Regardless of whether we have a discrete or continuous (infinitesimal)

system, probability is conserved. That is,

IX
i=1

Pi = 1, (2.75)
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for discrete systems, and Z b

a

p (y) dy = 1, (2.76)

for continuous systems. The latter implies that P (b) = 1, and P (a) = 0,
which is normally the case. In some instances it may be useful to reverse the
order of the interval and hence the convention.
In general, we may talk about a system (thing) being in a particular state

only if the state is part of a discrete set of states, Otherwise we may only talk
about a system being in a subrange of states if it has a continuous set of states.

Remark 4 We said initially that it was easier to deal with determinism than
stochasticism. Now we want to briefly consider that physics indicates that de-
terminism is a special form of stochasticism. By this we mean that the universe
is inherently random but under certain special conditions, which are not un-
common, the physics may constrain the states in such a way that they behave
in an essentially deterministic fashion.

2.9.3 Moments

Let us now consider some developments of the idea of randomness. First,
consider that we have some process that is characterized by some random
variable x ⊂ [a, b]. If we are dealing with probability theory we should have
some probability density function associated with this random variable, p (x).
If we are dealing with statistics, then we should have some set of measurements
{xi : i = 1..I} of x. In either case, we are interested in some related concepts.
If, for example, we are dealing with measured data, we may be interested

in determining the behavior of the random variable. That is, we may want to
infer, at least approximately, what p (x) is.
If, on the other hand, we ate interested in predicting the outcome of ex-

periments, then we may want to estimate or approximately compute what the
measured data should look like.
Because the process is random, there is no simple deterministic way that we

can predict the individual values of xi from p (x), nor is there any simple deter-
ministic way that we may arrive at p (x) from the xi. In these considerations
we must account for the randomness, the stochastic nature, of the process.
In this sense, if we pick, by some method, a set of values {x0i} from p (x0),

then we should not expect a close degree of agreement between the x0i and the
xi on an individual basis. We should however, expect that their behavior as
collections {x0i} and {xi} should have some degree of agreement. In probability
and statistics one such measure of comparison is moments, in reference to the
pdf of the process.
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For a continuous distribution (random variable,) themoment (of order n)
is defined by

hxni ≡
Z b

a

xn p (x) dx. (2.77)

For a discrete random variable, the moment is

hxni ≡
JX

j=1

xnj Pj. (2.78)

The equivalent quantity in statistics is

hxni ≡ 1
I

IX
i=1

xni . (2.79)

The symbol h i is sometimes reserved to indicate an ensemble average, that is,
an average over a population, collection, or ensemble. This definition corre-
sponds to the classical definition of probability. When this distinction is made
one talks about a time average of the form

xn (t) =

Z tmax

tmin

xn (t) p (t) dt. (2.80)

This is, of course, a functional average, and for ergodic systems the two should
be equivalent.
At this point a bit of diversion for explanation is called for. If we compare

equations 2.78 and 2.79 we note that we have two sets {xj : j = 1..J} and
{xi : i = 1..I} where the first set is the set of states’ particular values, while
the second is the set of observations’ particular values. If we use our coin as an
example, the xj are the numeric values corresponding to heads and tails, while
the xi are the individual measurements or observations of particular trials or
samples. Thus while the values of the xj and the xi are the same, either one or
two, they have very different meanings. We also note that, of necessity, I > J ,
although often, I < N , the population size. If we now take the Pj and multiply
by N (and round the results to integers - zero decimal place real numbers,)
then these values should correspond (approximately) to the number of times
the set of xi have the particular value of the xj. In other words, and following
from the definition of probability, the number of times a particular state value
occurs in a set of trials or samples is directly related to the probability of that
state.
In statistics, the difference between a set of samples and a population is

made if the sample size is less than the population. This applies to the mo-
ments. A particular moment, called the variance, is defined slightly differently
for a population and for a sample (of size less than the population.) The first
moments, called the mean, is the same regardless. The basic definition of the
variance is

σ2 =

x2
®− hxi2 , (2.81)
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and its square root, σ, is called the standard deviation, which is normally
the positive root. (There are exceptions in physics due to the mathematical
form.)
The mean is defined identically for both sample and population, but the

variance for a population is

σ2population =
1

N

NX
i=1

(xi − hxi)2 , (2.82)

while the sample variance is

σ2sample =
1

I − 1
IX

i=1

(xi − hxi)2 . (2.83)

The notable difference is that the denominator is reduced by one. This differ-
ence follows from the fact that the sample represents a subset of the population
and there are many subsets possible. Many basic textbooks will claim this dif-
ference is because of the smaller size of the sample variance but this is an effect
erroneously labeled in such cases as a cause.
It is also convenient that we may assume, at least computationally, that a

cumulative distribution function (probability function,) P (x),

P (x) =

Z x

a

p (y) dy, (2.84)

can be inverted. That is, that P (x) is a single valued function in x , and we
may meaningfully calculate with x (P ).

2.9.4 Exponential Processes

To this end, we now want to consider a random process that is discrete in
sequence. By this, we mean that we usually have a single thing and we measure
its state repeatedly. As a concrete example, we consider how many times we
should have to flip a coin to observe a head, or to roll a six-sided dice to observe
a "5". We designate the counting of the trials, either coin flips or dice throws,
in concrete terms by n, n = 1..
Let the probability of the desired event be q, which for the coin should

have the specific value 1 /2 and for the dice 1 /6 . The probability that we first
observe the state on the nth trial (observation) is Pn. For the first trial we have
simply

P1 = q. (2.85)

Since we cannot observe the state on the first trial for it to be first observed
on the second trial, the probability of observing the state on the second trial
is just

P2 = (1− q) q, (2.86)
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which is just the product of the probability that the state does not occur on
the first trial times the probability it does occur on the second trial..
From this we may deduce that the general form of the probability of first

observing the state on the nth trial is just

Pn = (1− q)n−1 q. (2.87)

We may now perform all manner of calculations since this amounts to the
formulation of the discrete density function.
Before proceeding, it is useful to introduce a basic result of the infinitesimal

calculus in the form of a quantity known as a geometric series,

NX
n=0

xn =
1− xN+1

1− x
, 0 ≤ x < 1. (2.88)

The equality x = 0 follows since 00 = 1! This series may be derived by
expanding 1 /(1− x) in a Maclaurin’s series in x, but we readily accept the
result here and such demonstration is left for adventurous students. Since we
require x < 1, we may take the limit

lim
N→∞

NX
n=0

xn → 1

1− x
, (2.89)

which is the more commonly used form.
If we now take the probabilities that the state is first observed on the nth

trial and sum over all possible trials, we have the series

∞X
n=1

Pn =
∞X
n=1

(1− q)n−1 q. (2.90)

If we now rearrange the right hand side and change to a new index m = n− 1,
we may rewrite this as

∞X
n=1

Pn = q
∞X

m=0

(1− q)m . (2.91)

We recognize this new right hand side as containing an infinite geometric series
with x = 1− q from which we may rewrite this equation as

∞X
n=1

Pn =
q

1− (1− q)
, (2.92)

=
q

q
,

= 1,

and we see the conservation of probability in action.
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Now, we may ask the question of how we calculate the expected number of
trials before we observe the state. This may be written simply as

hni =
∞X
n=1

n Pn, (2.93)

which we see is just the value of the number of the observation times its proba-
bility, summed over all possible observations. This may immediately be rewrit-
ten as

hni =
∞X
n=1

n (1− q)n−1 q, (2.94)

which we could sum as is but that would be tedious and difficult. Instead, we
shall make use of mathematical trickery.
By the property of the infinitesimal derivative, we may write

n (1− q)n−1 = − d

dq
(1− q)n , (2.95)

which allows us to rewrite the sum as

hni = −q d

dq

∞X
n=1

(1− q)n , (2.96)

where we have rearranged the sum and interchanged the order of derivative
and sum. We can do the latter because the sum is essentially independent of
the variable q so long as we do not violate the restrictions on the sum.
We now note that the sum differs from an infinite geometric series only by

the n = 0 term, so we may rewrite the series as

hni = −q d

dq

" ∞X
n=0

(1− q)n − 1
#
, (2.97)

and we now have a geometric series. This is easily summed by inspection,
giving us

hni = −q d

dq

∙
1

q
− 1
¸
, (2.98)

from our previous calculation. Now we may differentiate the square bracket
term by term and multiply by q, giving us

hni = 1

q
. (2.99)

So the expected number of trials to observe a state of probability q is 1 /q .
A simple experiment may be conducted by tossing a coin until heads occurs.

Each trail consists of noting the number of tosses necessary. Designate these
observations as {ni, i = 1..I}. As I gets larger, we find that

lim
I→∞

1

I

IX
i=1

ni → 1

q
, (2.100)
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which should have a specific value of 2 for the coin toss. This is left as an
exercise.
Now let us shift our view of this process. Consider now that each trial takes

a set amount of time τ . As a result, we may convert this from a discrete to a
continuous process so long as q is sufficiently small.
Start with the probability of observation

Pn = (1− q)n−1 q

and calculate the finite difference

∆Pn = (1− q)n q − (1− q)n−1 q (2.101)

= [(1− q)− 1] (1− q)n−1 q
= [(1− q)− 1]Pn

= −q Pn.

From this we may write the finite differential as

∆Pn

∆n
= −q Pn, (2.102)

since ∆n = 1.
We now write the number of trials as

n =
t

τ
, (2.103)

to within a quantity less than one, so we may write the differential as

∆n =
∆t

τ
. (2.104)

This allows us to rewrite, by substitution, equation 2.103 as

∆Pt

∆t
= −q

τ
Pt, (2.105)

where we have made the somewhat unspecified transformation Pn → Pt. This
will clarify shortly.
If we now take the limit as ∆t→ 0, we transform the finite differential into

an infinitesimal differential, or derivative, and the discrete probability now
become a continuous probability function with a differential equation

dP (t)

dt
= −q

τ
P (t) , (2.106)

where P (t) now represents the probability (cdf) that by time t we have ob-
served the state. If we now solve the differential equation,

P (t) = 1− e−
qt
τ (2.107)
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which we may differentiate to obtain the pdf of the process, which has form

p (t) =
q

τ
e−

qt
τ . (2.108)

From this we may now compute the expected time to observation of the
state as

hti = q

τ

Z ∞

0

t e−
qt
τ dt, (2.109)

which we may calculate as

hti = τ

q
. (2.110)

This result, to within the difference between an integer and a real, is identical
to the discrete result.
We have seen here that a discrete random process giving rise to a geometric

distribution is in a sense equivalent to a continuous random process whose
distribution is negative exponential. Such processes have some importance in
physics and we shall explore them more closely in later chapters.

2.9.5 The Gaussian Distribution

We now consider the Gaussian (named after the noted mathematician Carl
Friedrich Gauss 1777-1855) or normal distribution, so beloved of teachers and
students. The pdf is

p (x) =
1√
2πσ

exp

"
−(x− x)2

2σ2

#
, (2.111)

where the meanings of x and σ will shortly be made clear. The cdf, as such,
does not exist in closed form, but is expressed as the integral

P (y) =
1√
2πσ

Z y

−∞
exp

"
−(x− x)2

2σ2

#
dx. (2.112)

Because there is no closed form, before computers it was traditionally necessary
to have to make use of tabulated computations.
The moments of the distribution may be calculated with the following in-

tegral taken from an integral table [Gradshteyn Ryzhik 1965, 3.462 2, p. 337]Z ∞

−∞
xn exp

£−px2 + 2qx¤ dx =
1

2n−1p

r
π

p

dn−1

dqn−1

µ
q exp

µ
q2

p

¶¶
. (2.113)
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We may calculate the mean of the Gaussian distribution as

hxi =
1√
2πσ

Z y

−∞
x exp

"
−(x− x)2

2σ2

#
dx (2.114)

=
1√
2πσ

Z y

−∞
x exp

∙
− x2

2σ2
+
2xx

2σ2
− x2

2σ2

¸
dx

=
1√
2πσ

exp

∙
− x2

2σ2

¸Z y

−∞
x exp

∙
− x2

2σ2
+
2xx

2σ2

¸
dx.

At this point we recognize the integral as having the form of our borrowed
integral, equation 2.113 with

n = 1,

p =
1

2σ2
,

q =
x

2σ2
.

Hence, we have by substitution

hxi =
1√
2πσ

exp

∙
− x2

2σ2

¸
1

21−1p

r
π

p

d1−1

dq1−1

µ
q exp

µ
q2

p

¶¶¯̄̄̄
q,p

,(2.115)

=
1√
2πσ

exp

∙
− x2

2σ2

¸
2σ2
√
2σ2π

µ
x

2σ2
exp

µ
x2

4σ4
2σ2
¶¶

= x.

This shows us that x is the mean and that the pdf is symmetric about the
mean, unlike the exponential distribution.
The second moment may be calculated by exactly the same technique,

giving us 
x2
®
= x2 + σ2, (2.116)

by which we see that σ2 is the variance, as we suspected from the notation.
A word of warning is in order about the Gaussian distribution. Technically

the random variable x has range [−∞,∞]. This means that x should be capable
of taking on all values from negative to positive infinity. Sometimes we make
approximations on different ranges such as when 0 < x ¿ σ. Additionally,
while the cdf does not exist in closed form, a quite good approximation exists
that is useful for computational purposes. This is

1√
2πσ

Z y

−∞
exp

"
−(x− x)2

2σ2

#
dx ' 1

2

⎡⎣1 + sign (y − x)

vuut1− exp"−2 (y − x)2

πσ2

#⎤⎦ ,
(2.117)

which is sometimes known as Feynman’s approximation because of his great
fondness for it.
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